🤖
AI Wiki
Gradient PlatformDocsGet Started FreeContact Sales
  • Artificial Intelligence Wiki
  • Topics
    • Accuracy and Loss
    • Activation Function
    • AI Chips for Training and Inference
    • Artifacts
    • Artificial General Intelligence (AGI)
    • AUC (Area under the ROC Curve)
    • Automated Machine Learning (AutoML)
    • CI/CD for Machine Learning
    • Comparison of ML Frameworks
    • Confusion Matrix
    • Containers
    • Convergence
    • Convolutional Neural Network (CNN)
    • Datasets and Machine Learning
    • Data Science vs Machine Learning vs Deep Learning
    • Distributed Training (TensorFlow, MPI, & Horovod)
    • Generative Adversarial Network (GAN)
    • Epochs, Batch Size, & Iterations
    • ETL
    • Features, Feature Engineering, & Feature Stores
    • Gradient Boosting
    • Gradient Descent
    • Hyperparameter Optimization
    • Interpretability
    • Jupyter Notebooks
    • Kubernetes
    • Linear Regression
    • Logistic Regression
    • Long Short-Term Memory (LSTM)
    • Machine Learning Operations (MLOps)
    • Managing Machine Learning Models
    • ML Showcase
    • Metrics in Machine Learning
    • Machine Learning Models Explained
    • Model Deployment (Inference)
    • Model Drift & Decay
    • Model Training
    • MNIST
    • Overfitting vs Underfitting
    • Random Forest
    • Recurrent Neural Network (RNN)
    • Reproducibility in Machine Learning
    • REST and gRPC
    • Serverless ML: FaaS and Lambda
    • Synthetic Data
    • Structured vs Unstructured Data
    • Supervised, Unsupervised, & Reinforcement Learning
    • TensorBoard
    • Tensor Processing Unit (TPU)
    • Transfer Learning
    • Weights and Biases
Powered by GitBook
On this page

Was this helpful?

  1. Topics

Logistic Regression

PreviousLinear RegressionNextLong Short-Term Memory (LSTM)

Last updated 5 years ago

Was this helpful?

Logistic regression is a machine learning algorithm used for classification problems. The term logistic is derived from the cost function (logistic function) which is a type of sigmoid function known for its characteristic S-shaped curve. A logistic regression model predicts probability values which are mapped to two (binary classification) or more (multiclass classification) classes.

Where:

  • 1 = the curve's maximum value

  • S(z) = output between 0 and 1 (probability estimate)

  • z = the input

  • e = base of natural log (also known as Euler's number)

In multiclass classification with logistic regression, a softmax function is used instead of the sigmoid function.

The decision boundary is the acceptable threshold at which a probability can be mapped to a discrete class e.g. pass/fail or vegan/vegetarian/omnivore.

The cost function in logistic regression is more complex than linear regression. For example, mean squared error would yield a non-convex function with many local minimums, making it difficult to optimize with gradient descent. Cross entropy, also called log loss is the cost function used with logistic regression.

Linear vs Logistic Regression

Linear regression predictions are continuous (e.g. test scores from 0-100).

Logistic regression predictions classify items where only specific values or classes are allowed (e.g. binary classification or multiclass classification). The model provides a probability score (confidence) with each prediction.

Like , is typically used to optimize the values of the coefficients (each input value or column) by iteratively minimizing the loss of the model during training.

Regularization is a technique used to prevent by penalizing signals that provide too much explanatory power to a single feature. Regularization is extremely important in logistic regression.

, a , is used to measure how accurate a model's predictions are -- this is expressed as the number of true classifications divided by the total.

linear regression
gradient descent
overfitting
model evaluation metric
Accuracy
Source: Technology of Computing
Source: Analytics India Magazine
Formula of a sigmoid function